
May 21st, 2015

qualification exam for PhD fellowships in WCMCS institutions

code

name .

field of study .

Each candidate chooses 5 problems and notes the choice on the examination card by checking

suiable boxes below. If more then 5 problems are chosen, only the first 5 will be evaluated.

Solution for each of the chosen problems must be written on a separate piece of paper.

Each piece of paper must be signed with the four-digit code given above. They must not be

signed with the candidate’s name.

Chosen problems:

1. � 2. � 3. � 4. � 5. �

6. � 7. � 8. � 9. � 10. �

11. � 12. � 13. � 14. � 15. �

Signature: .

Problem 1. Solve the following optimization problem:

find the minimizer of −
n
∑

i=1

log(αi + xi)

for i = 1, ..., n, xi ≥ 0,
(1, ..., 1)T (x1, ..., xn) = 1,

provided αi > 0 for each i = 1, ..., n.

Problem 2. Find the number of all subsets of the set {1, . . . , n}, such that they do not contain
subsequent two elements.

Problem 3. Let p be a prime number different from 2, and let a ∈ Z
∗

p. Examine a perturbation

σa : Z∗

p ∋ b 7→ ab ∈ Z
∗

p. Show that a(p−1)/2 = sgn(σa), where sgn denotes the sign of perturbation.

Problem 4. Let l∞ be a space of bounded sequences of numbers from R with the sup-norm. Given
{a1, a2, . . .} Define P{a1, . . .} = {a1/2, a2/4, . . . , ai/2

i, . . .}, P : l∞ → l∞.
Show that P is a compact operator (if {fn} ⊂ l∞ uniformly bounded then {Pfn} contain a Cauchy

subsequence).

Problem 5. For the matrix

A =

3/2 1/2 0 0
1/2 3/2 0 0

0 0 0 −2
0 0 −2 0

we apply the inverse power method

~yk := (A− σI)−1~xk−1, ~xk := ~yk/‖~yk‖2, k = 1, 2, . . .

with the initial vector ~x0 = [1, 0, 0, 1]T . Find σ ∈ R for which

(a) the sequence {~xk}
∞

k=0 converges to an eigenvector of A?

(b) the sequence {ηk}
∞

k=0, where ηk = ~xT
kA~xk, converges to an eigenvalue A?

Problem 6. Let X1, ..., Xn be a random sample from distribution with the probability density

fθ(x) =

{

θ
(1−x)2 · e−θx/(1−x) for 0 < x < 1

0 w p.p.

where θ > 0 is a unknown parameter. Let θ0 > 0 be known number. Construct test of hypothesis
H0 : θ ≥ θ0 agaist alternative H0 : θ < θ0, which is uniformly most powerful test at confidence level
α.

(Quartiles of typical distributions are known)

Problem 7. Let f : R → R, f(0) = 0 be a continuous function. Consider the initial problem

dx

dt
= f(x), x(0) = x0.

(a) Let f ∈ C1(0;∞) , f(x) > 0 for x > 0, limx→0+ f ′(x) = +∞ and there exists a primitive function
F(x) of function 1

f(x) with F (0) = 0.

Solve the problem for x0 = 0.
(b) Let f ∈ C1(R), concave, unimodular, having just one maximum at point x = a > 0. Analyze

the solution (drawing them) for any x ≥ 0 i t ≥ 0.

Problem 8. Let X = (X1, X2) be a two dimensional random vector with distribution function
N(0, I2), where I2 is 2× 2 identity matrix. Compute the probability P[|X1|+ |X2| ≤ 1].

Problem 9. Find an algorithm that solves the following decision problem in linear time.

Input: Undirected planar graph G.
Question: Does graph G contain (as a subgraph) a four-element clique?

Problem 10. Consider a given graph G = ({1, . . . , n}, E) together with a function w : E → R+, two
distinguished distinct vertices s, t ∈ V , and a number k ∈ N+. By length of a path in G we mean sum
of values of w for all edges in the path. The paths, considered as sequences of vertices, can be ordered
lexicographically. Find an efficient algorithm that computes the kth path in the lexicographic order
in the set of the shortest paths from s to t, or detects that no such path exists.

Problem 11. What is the computational complexity of the following decision problem?

Input: Regular expression E and a natural number n, represented in binary.
Question: Does L(E) contain at least one word of length n?

Problem 12. For a language L, let half(L) denote the language {w : ww ∈ L}. Is the following
decision problem decidable?

Input: Context-free language L.
Question: Is half(L) nonempty?

Problem 13. Is it possible to express in first-order logic that an undirected graph is regular?

Recall that an undirected graph is regular, if all vertices have the same degree. We represent a graph
as a relational structure 〈V,E〉, where E ⊆ V × V .

Problem 14. We say that a sequence a of integers of length n covers a sequence b, if for every
i ∈ {1 . . . n}, sum of the first i elements of a is not smaller than sum of the first i elements of b.

Below we give an example, possibly erroneous implementation of function covers that decides
whether a covers b. Find and correct an error in the implementation, and then verify the function
covers using Hoare logic.

int covers(int[] a, int la, int[] b, int lb) {

int s = 0;

for(int i=0; i<la; i++) {

s += a[i] - b[i];

if (s<=0) return 0;

}

return 1;

}

Problem 15. Consider a system for detecting suspicious network activity. It works on a multi-
processor router and selectively monitors the network traffic passing through the router. The numerous
threads comprising the system work as follows. Each incoming packet is immediately classified by
highly specialized hardware circuits into one of so-called streams. From time to time, for each stream,
the system selects a random packet, which is then subjected to a more detailed and computationally

expensive analysis. Based on the analysis, various alarms for the network administrators can be
triggered.

Your task is to implement the selection of a random packet from a stream and to prove the
correctness of your solution. The solution should aim to maximize the performance and scalability of
the system with respect to the total number of streams, S, handled by the router. More specifically,
you have to implement the following functions and data structures:

Struct/class Stream The implementation should specify all and only those fields of Stream that
describe the data structures required by your solution.

Function/method void packetClassified(Stream * s, Packet * p) This function is invoked
whenever the router has received an incoming packet, p, and has classified it into a stream, s,
(objects s and p are allocated and garbage-collected automatically by the router). The func-
tion may be invoked independently and in parallel by many threads, for instance, representing
different network interfaces of the router. Nothing else is known about the distribution of these
invocations in time and between the streams.

Function/method Packet * getRandomPacket(Stream * s) This function is invoked whenever
the router needs a random packet from a stream, s, for a more detailed analysis. It must return
a packet selected uniformly at random among all packets classified into stream s in the period
either from the last invocation of the function for stream s, if there was such an invocation, or
since the start of the system, if the function has not been invoked for stream s so far. If in this
period no packets were classified into stream s, the function must return null. The function
may be invoked independently and in parallel by many threads. Nothing else is known about
the distribution of these invocations in time and between the streams.

Function/constructor void initStream(Stream * s) This function is invoked when the router
boots, before it starts receiving any packets. Its task is initializing the data structures for stream
s.

For controling the lifetime of packets, one should use functions/methods void pinPacket(Packet

* p) and void unpinPacket(Packet * p). Both these functions are safe with respect to invocations
by concurrent threads. The first marks a packet, so that it will not be garbage-collected. In particular,
each packet for which pinPacket is not invoked within function packetClassified will be garbage-
collected after packetClassified returns. By symmetry, unpinPacket unmarks the packet, thereby
making it a candidate for garbage collection. It may be assumed that the function analyzing the
randomly selected packets calls unpinPacket after having analyzed each of the packets returned by
getRandomPacket.

For generating random numbers, one should use the router’s hardware generator of pseudorandom
numbers, which is available through function double hwRandom(). The function returns a pseudo-
random, uniformly distributed number from [0 . . . 1) It is thread-safe. It may also be assumed that
operations on double do not suffer from numerical errors.

For managing concurrency, one can select arbitrary standard synchronization mechanisms available
from the user space, but it is important to explain the properties that those mechanisms must satisfy
and justify the choice of the mechanisms. It may be assumed that the implemented functions will
be invoked by a fixed number of threads, P , which roughly corresponds to the number of processors
available on the router.

